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A common measure of conformational similarity in structural bioinformatics is

the minimum root mean square deviation (RMSD) between the coordinates of

two macromolecules. In many applications, the rotations relating the structures

are not needed. Several common algorithms for calculating RMSDs require the

computationally costly procedures of determining either the eigen decomposi-

tion or matrix inversion of a 3� 3 or 4� 4 matrix. Using a quaternion-based

method, here a simple algorithm is developed that rapidly and stably determines

RMSDs by circumventing the decomposition and inversion problems.

1. Introduction

Orthogonal rotations are commonly used for comparing macro-

molecular structures, and the root mean square deviation (RMSD) is

a natural metric for quantitating the similarity of two optimally

rotated structures (Flower, 1999). Several least-squares algorithms

have been proposed for finding the rotation that minimizes the

squared distances between corresponding atoms in the structures.

The most efficient of these methods requires the eigen decomposition

(or inversion) of a key matrix constructed from the sums and squares

of the atomic coordinates in the structures being compared. The

popular method of Kabsch (1978) involves a 3� 3 key matrix,

whereas the methods of Diamond (1988), Horn (1987) and Kearsley

(1989) use quaternion representations of the rotations with 4� 4 key

matrices. In each of these methods, the minimizing rotation is formed

from the eigenvectors of the key matrices and the minimizing RMSD

is found from the eigenvalues of the key matrices.

In Kabsch’s method, improper rotation matrices (rotoinversions)

may arise and one must verify that the determinant of the rotation

matrix is positive (Kabsch, 1978). Quaternion-based methods lack

this complication since quaternion rotations are always proper. Thus,

with quaternion-based methods the minimum RMSD can be calcu-

lated using the eigenvalues of the key matrix alone, without knowing

the eigenvectors. If only RMSDs are desired, the quaternion-based

methods can save a considerable amount of computation by avoiding

a complete eigen decomposition of the key matrix.

Diamond (1988) proposed the fastest method known for deter-

mining minimum RMSDs using an iterative algorithm. Diamond’s

method requires one 3� 3 matrix inversion per cycle in order to find

the largest eigenvalue of a quaternion-based 4� 4 matrix. While

matrix inversions are generally expensive, the inversion of a 3� 3

matrix can be calculated analytically and relatively quickly.

Diamond’s method, however, is unstable when the minimizing rota-

tion is near 180�. This problem is especially grave when the coordi-

nate differences are of magnitude similar to the coordinates

themselves, such as is common when superimposing relatively small

fragments of proteins or nucleic acids.

Based on Horn’s quaternion superposition method (Horn, 1987),

which is relatively unknown in structural biology, an extremely fast,

numerically stable and accurate algorithm is presented here for

determining minimum RMSDs. This algorithm does not require

separate consideration of special problematic cases and it bypasses

the computationally costly diagonalization and inversions commonly

used to find the needed eigenvalues. Rather, a quick and simple

Newton–Raphson root-finding method is used to determine the

appropriate eigenvalue from the characteristic polynomial of the key

matrix. This quaternion-based characteristic polynomial (QCP)

algorithm requires significantly less computation than the alternate

methods, including Diamond’s.

2. The superposition problem

A molecular structure consisting of N atoms can be represented as an

N � 3 matrix, where the three columns correspond to the x, y and z

coordinates. The superposition objective is to find the orthogonal

rotation and translation that minimizes the squared Euclidean

distance between the rows of two matrices corresponding to the two

structures being compared. The translational component of the

problem can be removed from the outset by translating each struc-

ture so that its respective centroid is at the origin. When super-

imposing structure B onto structure A, in matrix notation the

problem is to minimize the sum of squared errors E with respect to

the orthogonal rotation R:

E ¼ kBR�Ak2
F ; ð1Þ

where kXkF denotes the Frobenius (or Euclidean) norm of the matrix

X,

kXkF ¼ ½trðX
0XÞ�1=2; ð2Þ

and X0 denotes the transpose of X and tr X denotes the matrix trace

of X. Upon expansion of equation (1), it can be shown that

E ¼ GA þGB � 2trðMRÞ ¼ ðNÞRMSD2; ð3Þ

where GA is the inner product of structure A,

GA ¼ trðA0AÞ ¼
PN

i

ðx2
A;i þ y2

A;i þ z2
A;iÞ;

and M is the inner product of the matrices A and B. The inner product

matrix M is given by



M ¼ B0A ¼

Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

2
4

3
5; ð4Þ

where

Sxy ¼
PN

i

xB;iyA;i: ð5Þ

3. A quaternion-based characteristic quartic polynomial for
calculating RMSDs

Horn (1987) has shown that the sum of squared errors E can be

minimized by solving for the largest positive eigenvalue �max of a

4� 4 symmetric key matrix K:

ðSxx þ Syy þ SzzÞ Syz � Szy Szx � Sxz Sxy � Syx

Syz � Szy ðSxx � Syy � SzzÞ Sxy þ Syx Szx þ Sxz

Szx � Sxz Sxy þ Syx ð�Sxx þ Syy � SzzÞ Syz þ Szy

Sxy � Syx Szx þ Sxz Syz þ Szy ð�Sxx � Syy þ SzzÞ

2
664

3
775:

The eigenvector corresponding to the largest eigenvalue of K is a

quaternion equivalent to the optimal rotation, where

RMSD ¼ ½ðGA þGB � 2�maxÞ=N�1=2: ð6Þ

Eigenvalues are usually determined by diagonalization of the

matrix. Alternatively, one can find the eigenvalues of a symmetric

matrix by locating the roots of the characteristic polynomial of the

matrix. With jXj denoting the determinant of matrix X, the char-

acteristic equation for the key matrix K is a quartic given by

C4�
4
þ C3�

3
þ C2�

2
þ C1�þ C0 ¼ 0;

where

C4 ¼ 1

C3 ¼ �tr K ¼ 0

C2 ¼ �2tr M0M

¼ �2ðS2
xx þ S2

xy þ S2
xz þ S2

yx þ S2
yy þ S2

yz þ S2
zx þ S2

zy þ S2
zzÞ

C1 ¼ �8jMj ¼ 8ðSxxSyzSzy þ SyySzxSxz þ SzzSxySyxÞ

� 8ðSxxSyySzz þ SyzSzxSxy þ SzySyxSxzÞ

C0 ¼ jKj ¼ Dþ Eþ F þGþH þ I;

where

D ¼ ðS2
xy þ S2

xz � S2
yx � S2

zxÞ
2

E ¼ ½�S2
xx þ S2

yy þ S2
zz þ S2

yz þ S2
zy � 2ðSyySzz � SyzSzyÞ�

� ½�S2
xx þ S2

yy þ S2
zz þ S2

yz þ S2
zy þ 2ðSyySzz � SyzSzyÞ�

F ¼ ½�ðSxz þ SzxÞðSyz � SzyÞ þ ðSxy � SyxÞðSxx � Syy � SzzÞ�

� ½�ðSxz � SzxÞðSyz þ SzyÞ þ ðSxy � SyxÞðSxx � Syy þ SzzÞ�

G ¼ ½�ðSxz þ SzxÞðSyz þ SzyÞ � ðSxy þ SyxÞðSxx þ Syy � SzzÞ�

� ½�ðSxz � SzxÞðSyz � SzyÞ � ðSxy þ SyxÞðSxx þ Syy þ SzzÞ�

H ¼ ½ðSxy þ SyxÞðSyz þ SzyÞ þ ðSxz þ SzxÞðSxx � Syy þ SzzÞ�

� ½�ðSxy � SyxÞðSyz � SzyÞ þ ðSxz þ SzxÞðSxx þ Syy þ SzzÞ�

I ¼ ½ðSxy þ SyxÞðSyz � SzyÞ þ ðSxz � SzxÞðSxx � Syy � SzzÞ�

� ½�ðSxy � SyxÞðSyz þ SzyÞ þ ðSxz � SzxÞðSxx þ Syy � SzzÞ�:

Using these coefficients, the characteristic equation can be reduced to

the following simple form:

Pð�Þ ¼ �4
þ C2�

2
þ C1�þ C0 ¼ 0: ð8Þ

Although the coefficient equations may appear somewhat

horrendous, coding them is straightforward. With careful program-

ming, by avoiding duplicate evaluations of several terms (such as

Syz � Szy which appears four times), calculating the coefficients from

the sums found in equation (4) involves at most only 66 floating point

operations (FLOPs).

Horn (1987) proposed solving this characteristic equation using

Ferrari’s method (Abramowitz & Stegun, 1972) for quartics. While

analytically exact, Ferrari’s method has seen little use as it is

computationally slow and notoriously numerically unstable. Addi-

tionally, Horn (1987) omits expressions for C0 and an equation given

for C2 contains an important typographical error.

Fortunately in this case, the largest positive root of the character-

istic polynomial given in equation (8) can be found very quickly and

with excellent numerical stability using the Newton–Raphson algor-

ithm. Successful use of the Newton–Raphson method requires a good

initial guess for the desired root. From equation (3) and noting that

the largest positive eigenvalue of the key matrix K is equal to trðMRÞ

with the optimal rotation, the largest positive root of the character-

istic polynomial attains its maximum possible value when the two

structures are in identical conformations (i.e. when RMSD ¼ 0).

Thus, the maximum possible value of the largest positive root is

constrained to be less than or equal to the average of the inner

products of the the two structures, ðGA þGBÞ=2. Using this value as

an initial guess in the Newton–Raphson algorithm is essentially fool-

proof, since the algorithm will converge first on the largest root of the

polynomial. The Newton–Raphson QCP algorithm can be described

by the following simple pseudocode:

whileðj�� �oldj< precisionÞ

�old ¼ �;

� ¼ �� Pð�Þ=½dPð�Þ=d��;

where the first derivative of the polynomial is given by

dPð�Þ=d� ¼ 4�3 þ 2C2�þ C1.

The Newton–Raphson QCP algorithm given above is much faster

than other common methods that require determination of eigen-

vectors, and it is also faster than methods using eigen decomposition

for only eigenvalues. The efficiency and speed of the QCP Newton–

Raphson algorithm were compared to the popular method using

Householder reduction to tridiagonal form followed by QL decom-

position with implicit shifts (H–QL method; Golub & Van Loan,

1996). Each iteration of the QCP algorithm requires merely

11 FLOPS, of which none are square roots. In contrast, the H–QL

algorithm requires a comparable number of total FLOPs but over two

dozen costly square roots. Diamond’s (1988) method is likewise much

more efficient than the eigen decomposition methods and also

requires no square roots. Each cycle of the Diamond iteration uses

� 70 FLOPS (accounting for symmetry considerations), plus

15 FLOPS for set-up. Since both the QCP and Diamond’s methods

take an average of about five iterations to converge to a relative

precision of 10�6, the QCP method uses only about one third of the

operations of Diamond’s method for eigenvalue determination. Thus,

essentially all of the computational effort in the QCP method is

expended in calculating the summations of the key matrix M given in

equation (4), a step that is common to all methods and dependent on

the number of atoms compared.

The QCP algorithm has been benchmarked on several computing

platforms (OSX, Linux and Irix) for >108 independent superposition

calculations with protein fragments ranging from 5 to 500 residues. In

all cases, the same RMSD solution was found, within error, as the

Kabsch and Kearsley methods. In contrast, especially with smaller
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fragments, Diamond’s method converged on an incorrect solution

(corresponding to the second largest eigenvalue) in a significant

fraction of cases. In the author’s experience, if the construction of the

key matrices is ignored, the QCP algorithm is over four times as fast

as Diamond’s method and 30 to 70 times faster than the eigen

decomposition methods. An ANSI C library implementing the QCP

method is available at http://monkshood.colorado.edu/QCP/ or by

request from the author.
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